

From Invariant Descriptors to Deep Pose Estimation

K. Yi, E. Trulls, V. Lepetit, and P. Fua

SIFT

Feature Points

Outstanding tool for matching points across images. SIFT (Lowe, ICCV'99) started the trend: ~48k citations.

Deep Learning Revolution

An opportunity to revisit and improve the pipeline:

- Reformulate its different components in terms of CNNs.
- Integrate them into a fully differentiable pipeline.
- Optimize them jointly.

1. Detecting Keypoints

TILDE: a Temporally Invariant Learned DEtector (CVPR 2015)

Hand-Designed Features under Severe Illumination Changes

--> Poor repeatability.

Learning to find Keypoints that Are Robust to Illumination Changes.

Learning from Aligned Image Stacks

- Pre-align images of a scene.
- Find locations that are often detected by a given feature detector.
- Train a CNN regressor to find these locations.

Examples

Images to match SIFT SURF FAST TILDE

Matching 5 days of the *Frankfurt* sequence with our keypoints

Quantitative Results Webcam Dataset

Keypoint Detection in Short

- Keypoint repeatability is crucial for many applications
- We can train a regressor to find repeatable keypoints.

2. Estimating Orientation

Learning to Assign Orientations to Feature Points (CVPR 2016)

III-Posed Problem

There is no such thing as a canonical orientation

Implicit Orientations

Learn to estimate **consistent** and **optimal** orientations for matching purposes.

Deep Siamese Network for Learning Orientation

minimize
$$\mathcal{L}(\mathbf{Pair}) = \left\| \begin{array}{l} \operatorname{Desc}(\mathbf{Patch}_1, \operatorname{Orient}(\mathbf{Patch}_1)) \\ - \operatorname{Desc}(\mathbf{Patch}_2, \operatorname{Orient}(\mathbf{Patch}_2)) \end{array} \right\|$$

 $Orient (\mathbf{patch}_1) = \arctan 2 \left(CNN \left(\mathbf{patch}_1 \right) [1], CNN \left(\mathbf{patch}_1 \right) [2] \right)$

 $Desc(\cdot)$ is not learned. Any rotation sensitive descriptor can be used.

Matching Examples

Our Learned Orientations

Dominant Gradient Orientations

Matching Examples

Our Learned Orientations

Dominant Gradient Orientations

Quantitative Evaluation

Test

86 sequences, 855 images

Mikolajczyk and Schmid, 2004, Strecha et al., 2008, Zitnick and Ramnath, 2011, Anaes et al., 2012, Verdie et al., 2015

Performance Gain with Learned Orientations

Average performance

Descriptor matching performances (mAP) with nearest neighbor matching (Mikolajczyk & Schmid, IJCV'04).

Estimating Orientation in Short

- Orientations are a key component in the local feature pipeline that has been largely **overlooked.**
- We have proposed a Deep Learning based approach to learn **good** orientations for matching purposes.
- This delivers significant performance improvements in matching performance.

3. Computing Descriptors

Discriminative Learning of Deep Convolutional Feature Point Descriptors (ICCV 2015)

Siamese Network

- Minimize the distance for corresponding matches.
- Maximize it for non-corresponding patches.

Our Network

- 3 convolutional layers, no fully-connected layers.
- About 45k parameters.
- Hard mining is key to good performance.

—> After training, a drop-in replacement for SIFT.

Training and Testing Data

Statue of Liberty (LY)

Notre Dame (ND)

Yosemite (YO)

- MVS dataset (Brown et al, PAMI'11), 3 SfM sets of 64x64 grayscale patches. Each one contains ~150k 3D points and ~450k patches.
- Train on two and test on the third.

Quantitative Results

Descriptors in Short

- **Outperforms** both hand-crafted descriptors and state-of-the-art, learned descriptors.
- Good **generalization properties:** scaling, rotation, deformation, illumination changes.
- Fast: 0.76 ms on GPU, vs 0.14 ms for dense SIFT.
- No metric learning → **Drop-in replacement for SIFT.**

4. Putting it all Together

LIFT: Learned Invariant Feature Transform (ECCV 2016)

All three main components are now CNNs.

Integrated Pipeline

Tie everything together using **differentiable modules**:

- Soft Argmax (Chapelle et al., Information Retrieval'09)
- Crop and Rotate (Spatial Transformer Networks, Jaderberg et al., NIPS'15)

—> End-to-end differentiability.

Training the pipeline

Training with SfM Keypoints

Piccadilly (pic)

Roman Forum (rf)

- We need variability (illumination, perspective, etc). We build SfM reconstructions from **photo-tourism sets.**
- We keep only **points with SfM correspondences** as positive examples, that is, we **learn to find repeatable points.**

Quadruplet Siamese

- Use patches around SIFT locations.
- Perturb patch locations to avoid biases.

P1, P2: corresponding keypoints.P3: non-corresponding keypoint. P4: non-keypoint.

Problem-Specific Training

- 1. Train the **Descriptor** using SfM (SIFT) patches.
- 2. Train the **Orientation Estimator** given the pretrained descriptor.
- 3. Train the **Detector** with the pre-trained Orientation Estimator and Descriptor.

Runtime Pipeline

• The **Detector** runs in scale-space with traditional NMS.

- Keypoints are passed on to the Orientation Estimator and Descriptor modules.
- Our TensorFlow GPU-based implementation takes ~3.0s on a 1600x1200 image, with an additional ~2.6 sec. of pure Python non-maximum suppression. On the same machine, SIFT takes ~2 sec (CPU, multi-threaded)

Matching features on **DTU** sequence **#19**. Correct matches depicted by **green** lines.

SIFT. Average: 34.1 matches

LIFT (Ours). Average: 98.5 matches

Matching features on **Webcam** sequence **Frankfurt**. Correct matches depicted by **green** lines.

SIFT. Average: 23.1 matches

LIFT (Ours). Average: 60.6 matches

Quantitative Evaluation

• Metric: Descriptor matching performances (mAP) with nearest neighbor matching (Mikolajczyk & Schmid, IJCV'04) as before.

Quantitative Evaluation

SFM Benchmark

		# Images	# Registered	# Sparse Points	# Observations	Track Length	Reproj. Error	# In	lier Pairs	# Inlier Matches	# Dense Points	Pose Error	Dense Error
Fountain	SIFT	11	11	10,004	44K	4.49	0.30px		49	76K	2,970K	0.002m (0.002m)	0.77 (0.90)
	SIFT-PCA		11	14,608	70K	4.80	0.39px		55	124K	3,021K	0.002m (0.002m)	0.77 (0.90)
	DSP-SIFT		11	14,785	71K	4.80	0.41px		54	129K	2,999K	0.002m (0.002m)	0.77 (0.90)
	ConvOpt		11	14,179	67K	4.75	0.37px		55	114K	2,999K	0.002m (0.002m)	0.77 (0.90)
	DeepDesc		11	13,519	61K	4.55	0.35px		55	93K	2.972K	0.002m (0.002m)	0.77 (0.90)
	TFeat		11	13.696	64K	4.68	0.35nx		54	103K	2.969K	0.002m (0.002m)	0.77 (0.90)
	LIFT		11	10,172	46K	4.55	0.59px		55	83K	3,019K	0.002m (0.002m)	0.77 (0.90)
Herziesu	SIFT	8	8	4.916	10K	4.00	0.32px		27	28K	2 373K	0.004m (0.004m)	0.57 (0.73)
nenajeou	SIFT-PCA	0	8	7 433	31K	4 19	0.42px		28	47K	2,372K	0.004m (0.004m)	0.57 (0.73)
	DSP-SIFT		8	7 760	32K	4 19	0.45px		28	50K	2 376K	0.004m (0.004m)	0.57 (0.73)
	ConvOnt		8	6 030	286	4.13	0.40px		20	42K	2.375K	0.004m (0.004m)	0.57 (0.73)
	DeenDesc		8	6.418	25K	3.02	0.38px		20	34K	2,375K	0.004m (0.004m)	0.57 (0.73)
	TEaat		0 0	6,606	251	4.00	0.30px		20	291	2,300K	0.004m (0.004m)	0.57 (0.73)
	LIFT		8	7,834	30K	3.95	0.63px		28	46K	2,375K	0.004m (0.004m)	0.57 (0.73)
6 4 B 3 F	oura	120	120	(2.790	2528		0.42		117	1.00217	1.0721/		
South Building	SIF I	128	128	107 674	555K	5.04	0.42px		21	1,005K	1,9/2K	-	-
	SIF I-PCA		128	107,074	050K	0.04	0.54px			2,019K	1,995K	-	-
	DSP-SIF1		128	110,394	604K	6.02	0.5/px		3K	2,079K	1,994K	-	-
	ConvOpt		128	103,602	61/K	5.96	0.51px		4K	1,850K	2,007K	-	-
	DeepDesc		128	101,154	558K	5.53	0.48px		6K	1,463K	2,002K	-	-
	Ireat		128	94,589	566K	5.99	0.49px		3K	1,56/K	1,960K	-	-
	LIFI		128	/4,60/	.599K	5.35	0.78px		эк	1,108K	1,975K	-	-
Madrid Metropolis	SIFT	1,344	440	62,729	416K	6.64	0.53px		14K	1,740K	435K	-	-
	SIF I-PCA		465	119,244	702K	5.89	0.5/px		27K	3,597K	537K	-	-
	DSP-SIFT		476	107,028	681K	6.30	0.64px		21K	3,155K	570K	-	-
	ConvOpt		455	115,134	634K	5.51	0.5/px		29K	3,148K	561K	-	-
	DeepDesc		377	68,110	348K	5.11	0.53px		19K	1,570K	516K	-	-
	TFeat		439	90,274	512K	5.68	0.54px		18K	2,135K	522K	-	-
	LIFT		430	52,755	33/K	6.40	0.76px		13K	1,498K	450K	-	-
Gendarmenmarkt	SIFT	1,463	950	169,900	1,010K	5.95	0.64px		28K	3,292K	1,104K	-	-
	SIFT-PCA		953	272,118	1,477K	5.43	0.69px		43K	5,137K	1,240K	-	-
	DSP-SIFT		975	321,846	1,732K	5.38	0.74px		56K	7,648K	1,505K	-	-
	ConvOpt		945	341,591	1,601K	4.69	0.70px		56K	6,525K	1,342K	-	-
	DeepDesc		809	244,925	949K	3.88	0.68px		31K	2,849K	921K	-	-
	TFeat		953	297,266	1,445K	4.86	0.66px		39K	4,685K	1,181K	-	-
	LIFT		942	180,746	964K	5.34	0.83px		27K	2,495K	1,386K	-	-
Tower of London	SIFT	1,576	702	142,746	963K	6.75	0.53px		18K	3,211K	1,126K	-	-
	SIFT-PCA		692	137,800	1,090K	7.91	0.60px		12K	2,455K	1,124K	-	-
	DSP-SIFT		755	236,598	1,761K	7.44	0.64px		33K	8,056K	1,143K	-	-
	ConvOpt		719	274,987	1,732K	6.30	0.62px		39K	7,542K	1,129K	-	-
	DeepDesc		551	196,990	964K	4.90	0.55px		25K	2,745K	653K	-	-
	TFeat		714	206,142	1,424K	6.91	0.57px		28K	5,333K	1,182K	-	-
	LIFT		715	147,851	1,045K	7.07	0.72px		23K	4,079K	729K	-	-
Alamo	SIFT	2.915	743	120.713	1.384K	11.47	0.54px		23K	7.671K	611K	_	_
	SIFT-PCA	<i>y</i>	746	108,553	1.377K	12.69	0.55px		12K	4.669K	564K	_	_
	DSP-SIFT		754	144,341	1.815K	12.58	0.66px		16K	10.115K	629K	_	_
	ConvOpt		703	102.044	1.001K	9.81	0.48px		3K	850K	452K	-	_
	DeepDesc		665	152,537	1.207K	7.92	0.48nx		16K	4.196K	607K	-	-
	TFeat		683	127,642	1.443K	11.31	0.52nx		16K	6.356K	648K	-	_
	LIFT		768	112,984	1,477K	13.08	0.73px		23K	9,117K	607K	-	-
Roman Forum	SIFT	2.364	1.407	242.192	1.805K	7.45	0.61px		25K	6.063K	3.097K	_	_
	SIFT-PCA	2,004	1 463	244 556	1 834K	7 50	0.61px		16K	4 322K	2 799K	_	_
	DSP_SIFT		1 583	372.573	2.8796	7 73	0.71px		26K	9.685K	3 748K	_	_
	Com/Ont		1 376	105 205	1 1721	6.01	0.5555		111	2 1111	3 0/21	-	-
	DeenDerr		1,370	175,505	1,1/3K 1 275V	7 21	0.60m		01/	1 824V	2,043K	-	-
	TEeat		1,173	1/4,332	1,275K	7.51	0.61m		9K 10F	1,6.54K	2,434K	-	-
	LIFT		1,434	220,026	1,608K	7.31	0.75px		17K	4,732K	2,898K	-	-
Cornell	SIFT	6 514	4 000	1 010 544	63174	6.25	0.5302	_	711	25 6021	12 9705	1 537m (0 702m)	
Cornen	SIFT-PCA	0,014	3,049	640,553	4.335K	6.77	0.54nx		26K	13,793K	6.135K	11.498m (1.088m)	-
	DSP-SIFT		4,946	1,177,916	7,233K	6.14	0.67px		73K	26,150K	11,066K	2.943m (1.001m)	-
	ConvOnt		1.986	632.613	4.747K	7.50	0.57px		42K	18.615K	5.321K	5.824m (0.904m)	-
	DeepDesc		3,489	1,225,780	6.977K	5.69	0.55px		73K	28.845K	10.159K	3.832m (0.695m)	-
	TFeat		5,428	1.499.117	9.830K	6.56	0.59px		89K	40.640K	15.605K	2.126m (0.593m)	_
	LIFT		3,798	1,455,732	7,377K	5.07	0.71px		81K	39,812K	10,512K	3.113m (0.712m)	_
				2 · · · 2 · · · -	A 11-1		- P						

- Reprojection errors are all under one 1pixel.
- LIFT's error is a little higher, probably because we trade recall for accuracy.
- Pose accuracy is relatively similar for all.
- Sometimes the two do not correlate exactly.

—> For the purpose of SFM, the chosen approach to establishing correspondences and rejecting outliers may be more important than the specific features being used.

Table 3. Results for our reconstruction benchmark. Pose error as mean (median) over all images. Dense error for 2cm (10cm) threshold [19]. First, second, third best results highlighted in bold. Number of images, sparse points, and dense points visualized in Figs. 1, 2, and 3.

Keypoints are only a means to an end!

- LIFT maximises the number of matches.
- Not all of them are useful.
- -> Need a good way to learn which ones are. Bian et al, CVPR 17

Local Feature Pipeline Revisited

- Three of the four main components are now CNNs.
- They have now been integrated into a single pipeline.

—> Must now work on the fourth!

4. Correspondences

RANSAC + 5 point method is not enough

Deep Learning to the Rescue

Learn to reject outliers and estimate the Essential matrix simultaneously.

-> Incorporate global context into the matching process.

Hartley and Zisserman, 2003

Revisiting the 8-point Algorithm

Simultaneous Classification and Regression

Multi-Layer Perceptron with Global Context Normalization (GCN)

· Loss is the sum of a classification and a regression term

Outlier rejection

RANSAC

Outlier rejection

Grid-Based Motion Statistics

Bian et al, CVPR 17

Outlier rejection

Our results

Mean Accuracy = ratio of pairs below error threshold of X, while X goes from zero to 20 (degrees) —> AUC

antitative Results

Conclusion

- We implemented the **full keypoint extraction pipeline** using Deep Networks while preserving end-to-end differentiability.
- We showed how to train it **effectively** and **outperform** the state-of-the-art.
- We are now working on reformulating the extraction **and** matching problem as end-to-end trainable CNN.

Software

Source code and pre-trained models are available for every component of the pipeline:

- ✓ TILDE detector:
 - github.com/cvlab-epfl/TILDE
- ✓ Orientation estimator:
 - github.com/cvlab-epfl/learn-orientation
- ✓ Descriptors:
 - github.com/cvlab-epfl/deepdesc-release
- ✓ One LIFT to rule them all:
 - github.com/cvlab-epfl/tf-lift

Thank you. Questions?