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Motivation -

e Attention Models for Fine-Grained Recognition
— Extracting discriminative regions or parts for classification
— Constant computational complexity for high resolution images
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Motivation .-

e Attention Models for Fine-Grained Recognition
— Extracting discriminative regions or parts for classification
— Constant computational complexity for high resolution images

* How many attentions do we need to recognize the bird?
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The Recurrent Attention Model (RAM) s

Recurrent Models of Visual Attention

Volodymyr Mnih  Nicolas Heess Alex Graves Koray Kavukcuoglu
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The Recurrent Attention Model (RAM)
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2 Attention Module:
ly ~ (l] fi(he, 01))

3. Classification Module:

Yy — arg maxP(y|fC(ht, ‘90))




RAM as a Fixed Number of Iterations willing
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Dynamic Computational Time for RAM s
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Dynamic Computational Time for RAM  c.es

1. Feature Extraction Module:

he = fu(hi—1, d(x,li—1), 0)
2. Classification Module:

Y = argmax P(y|f.(h, 0.))
3. Attention Module:

Ly ~ m(l] fi(he, 01))
4. Stopping Module:

Ay ~ ﬂ-(a‘fa(hta 9@))




Different Inputs — Different Process Time eaes
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Related Work .-

Adaptive Computation Time
for Recurrent Neural Networks

Alex Graves
Google DeepMind
gravesa@google.com
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Figure 1: RNN Computation Graph. An RNN unrolled over two input steps (separated by vertical dotted lines). The input . Yi-1 S¢ hi_y : 8

: -1 - Yi t
and output weights W, Wy, and the state transition operator S are shared over all steps. : \ ) :
4 : W :

n
. . / . n .
N (t) = min{M, min{n' : g hy >=1—¢€}}
Figure 2: RNN Computation Graph with Adaptive Computation Time. The graph is equivalent to Figure 1, only with

n= 1 each state and output computation expanded to a variable number of intermediate updates. Arrows touching boxes denote
operations applied to all units in the box, while arrows leaving boxes denote summations over all units in the box.




Related Work eilbiing

Feedback Networks

Amir R. Zamir?* Te-Lin Wu'* Lin Sun! William Shen! Jitendra Malik? Silvio Savarese!
! Stanford University 2 University of California, Berkeley
http://feedbacknet.stanford.edu/
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Figure 9. Timed-tSNE plots for five random CIFAR100 classes showing
) . o how the representation evolves through depth/iterations for each method
Figure 1. A feedback based learning model. The basic idea is to make (i.e. how a datapoint moved in representation space). The brighter the ar-
predictions in an iterative manner based on a notion of the thus-far out- . . . s . .

. . . . . row, the earlier the depth/iteration. Feedback’s representation is relatively
come. This provides several core advantages: 1. enabling early predictions X X 5 N X
(given total inference time 7', early predictions are made in fractions of T); disentangled throughout, while feedforward’s representation gets disentan-
I1. naturally conforming to a taxonomy in the output space (one branch of gled only towards the end. (Best see on screen. Vector lengths are shown
the taxonomy is explored with each iteration); and III. better grounds for in half to avoid cluttering.)
curriculum learning.



Related Work
BaichEE
Spatially Adaptive Computation Time for Residual Networks
Michael Figurnov'* Maxwell D. Collins?>  Yukun Zhu®? LiZhang? Jonathan Huang?
Dmitry Vetrov!*  Ruslan Salakhutdinov*
"Higher School of Economics  2Google Inc.  *Yandex “Carnegie Mellon University
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block of residual units

Figure 3: Adaptive Computation Time (ACT) for one block of
residual units. The computation halts as soon as the cumulative
sum of the halting score reaches 1. The remainder is R = 1 —
h' — h® — h® = 0.6, the number of evaluated units N = 4, and
the ponder costis p = N + R = 4.6. See alg. 1. ACT provides
a deterministic and end-to-end learnable policy of choosing the
amount of computation.

block of residual units

Figure 4: Spatially Adaptive Computation Time (SACT) for one
block of residual units. We apply ACT to each spatial position of
the block. As soon as position’s cumulative halting score reaches
1, we mark it an inactive. See alg. 2. SACT learns to choose the
appropriate amount of computation for each spatial position in the
block.



Training — With Ground Truth Class Labels.es
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Training -
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Training (Policy Gradient)
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More Formally -

Use reward to replace loss: 50 zn: zs: ( 90 Rn + 20

T'(n)
Sample attention and stopping: P(S|zn,0) = H T (le| fi(ht, 01)) (at| fa(Pe, 0q))

T'(n)
Discounted cumulative reward: R, = Z 7trnt
t=1
T(n)
Intermediate supervision: Ls(Zn,Yn,0) = Z Li(Zn, Yn, On, 0.)



Discounted Reward for Early Stopping  ees

* The discounted reward is designed for early stopping

 The discount factor v controls the trade-off between accuracy
and computational complexity

Discounted cumulative reward: R, = Z Vorp

. 1. ify,=y andt=T(n
Immediate reward: ro = { o W Yne = Yy (n)

0, otherwise



Experiments: Fine-Grained Recognition e.es

Dataset #(Classes #Train #Test BBox

MNIST [14] 10 60000 10000 -
CUB-200-2011 [15] 200 5994 5794 vV
Stanford Cars [16] 196 8144 8041 Vv

Table 1. Statistics of the three dataset. CUB-200-2011 and Stan-
ford Cars are both benchmark datasets in fine-grained recognition.




Experiments on MNIST -

* Image Resolution: 28x28, Crop Resolution: 8x8

MNIST # Steps Error(%) 0.042 ® DT-RAM-1, 1.46% error
0.4 ® DT-RAM-2, 1.12% error

FC, 2 layers (256 hiddens each) - 1.69

Convolutional, 2 layers - 1.21 < 0'032

RAM 2 steps 2 3.79 £ 0'2'5

RAM 4 steps 4 1.54 S 0.2

RAM 5 steps 5 1.34 % 015

RAM 7 steps 7 1.07 0.1

DT-RAM-1 3.6 steps 3.6 1.46 0.05 J o

DT-RAM-2 5.2 steps 52 112 0 .

Table 2. Comparison to related work on MNIST. All the RAM
results are from [6].

Number of steps



Experiments on CUB-Birds and Cars .-

* Baseline: Residual Net 50 pre-trained on ImageNet
* Image Resolution: 512x512, Crop Resolution: 224x224



Experiments on CUB-Birds and Cars -

* Baseline: Residual Net 50 pre-trained on ImageNet
* Image Resolution: 512x512, Crop Resolution: 224x224

CUB-200-2011 Accuracy(%) Acc w. Box(%) Stanford Cars Accuracy(%) Acc w. Box(%)
Zhang et al. [63] 73.9 76.4 Chai et al. [65] 78.0 _
Branson et al. [56] LN, 84 Gosselin et al. [66] 82.7 87.9
Simon et al. [64] 81.0 - Can I LN TA 38 4 i
Krause et al. [48] 82.0 82.8 \ et at. :

Lin ef al. [54] 84.1 85.1 Lin et al. [54] 91.3 -
Jaderberg et al. [59] 84.1 - Wang et al. [6¢] - 92.5
Kong et al. [53] 84.2 - Liu et al. [62] 91.5 93.1
Liu et al. [67] 84.3 84.7 Krause et al. [4¥] 92.6 92.8
Liu et al. [9] 85.4 85.5 ResNet-50 [23] 923 i
ResNet-50 [23] 84.5 - RAM 3 steps 93.1 -
RAM 3 steps 86.0 - DT-RAM 1.9 steps 93.1 -
DT-RAM 1.9 steps 86.0 -

- Table 4. Comparison to related work on Stanford Cars dataset.
Table 3. Comparison to related work on CUB-200-2011 dataset. *

Testing with both ground truth box and parts.



Experiments on CUB-Birds and Cars .-

* Baseline: Residual Net 50 pre-trained on ImageNet
* Image Resolution: 512x512, Crop Resolution: 224x224

CUB-200-2011 Accuracy(%) Acc w. Box(%) Stanford Cars Accuracy(%) Acc w. Box(%)
Zhang et al. [67] 73.9 76.4 Chai et al. [65] 78.0 i,
e 85.4 Gosselin er al. [66]  82.7 87.9
Krause et al. [48] 82.0 82.8 Girshick ez al. [67] 88.4 -

Lin ef al. [54] 84.1 85.1 Lin et al. [54] 91.3 -
Jaderberg et al. [59] 84.1 - Wang et al. [6¢] S 92.5

Kong et al. [53] 84.2 - Liu et al. [62] 91.5 93.1

Liu et al. [67] 84.3 84.7 Krause et al. [4¥] 92.6 92.8

Liu et al. [9] 85.4 85.5

ResNet-50 [23] 92.3 -
ResNet-50 84.5 - M 3 Steps 93.1 -
AU S S Uil - DT-RAM 1.9 steps./  93.1 -
DT-RAM 1.9 steps 86.0 - .
Table 4. Comparison to related work on Stanford Cars dataset.

Table 3. Comparison to related work on CUB-200-2011 dataset. *
Testing with both ground truth box and parts.




Qualitative Results illbg
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(e) 5 steps (f) 6 steps

Figure 7. Qualitative results of DT-RAM on CUB-200-2011 festing set. We show images with different ending steps from 1 to 6. Each
bounding box indicates an attention region. Bounding box colors are displayed in order. The first step uses the full image as input hence
there is no bounding box. From step 1 to step 6, we observe a gradual increase of background clutter and recognition difficulty, matching
our hypothesis for using dynamic computation time for different types of images.

(a) 1 step (b) 2 steps (c) 3 steps
Figure 8. Qualitative results of DT-RAM on Stanford Car testing set. We only manage to train a 3-step model with 512x512 resolution.



Diagnostic Experiments (On CUB-Birds) euies

* Baseline: Residual Net 34 pre-trained on ImageNet
* Image Resolution: 256x256, Crop Resolution: 100x100

Model # Steps Accuracy(%)
ResNet-34 1 79.9
RAM 2 steps 2 80.7
RAM 3 steps 3 81.1
RAM 4 steps 4 81.5
RAM 5 steps 5 81.8
RAM 6 steps 6 81.8
DT-RAM (6 max steps) 3.6 81.8

Table 6. Comparison to RAM on CUB-200-2011. Note that the
1-step RAM is the same as the ResNet.



Diagnostic Experiments (On CUB-Birds) euies

* Baseline: Residual Net 34 pre-trained on ImageNet
* Image Resolution: 256x256, Crop Resolution: 100x100

Model # Steps  Accuracy(%) 0.35
ResNet-34 1 79.9 03
RAM 2 steps 80.7 0.25
RAM 3 steps 81.1

Proportion

AN B~ W

Table 6. Comparison to RAM on CUB-200-2011. Note that the 0
1-step RAM is the same as the ResNet.

0.2
RAM 4 steps 81.5 01
RAM 5 steps 81.8 '
RAM 6 steps 81.8 0.1
DT-RAM (6 max steps) 3.6 81.8 0.05 I m
1 2 3 4 5 6

Number of steps



Diagnostic Experiments (On CUB-Birds) euies

* How does it compare against a fixed policy?
* Fixed policy: Stop if one class confidence is above threshold.

Threshold # Steps Accuracy(%)
0 1 79.9
0.4 1.4 80.7
0.5 1.6 81.0
0.6 1.9 81.2
0.9 3.6 81.3
1.0 6 81.8
DT-RAM (6 max steps) 3.6 81.8

Table 7. Comparison to a fixed stopping policy on CUB-200-2011.
The fixed stopping policy runs on RAM (6 steps) such that the
recurrent attention stops if one of the class softmax probabilities is
above the threshold.



Diagnostic Experiments (On CUB-Birds) euies

Resolution ResNet-34 RAM-34 Resnet-50 RAM-50

. 224x224 79.9 81.8 81.5 82.8
How does Resolution and Depth affect: 448 % 448 _ _ 34 5 26.0

Table 5. The effect of input resolution and network depth on
ResNet and its RAM extension.

# Steps 1 2 3 4 5 6

w.CL. 799 80.7 81.1 81.5 81.8 81.8

Table 8. The effect of Curriculum Learning on RAM.

# Steps 1 2 3 4 5 6

How does Intermediate Supervision affect: w.oLS. 79.9 78.8 76.1 748 749 747
w. LS. 79.9 80.7 81.1 81.5 81.8 81.8

Table 9. The effect of Intermediate Supervision on RAM.
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* Residual net is a STRONG baseline for fine-grained
— On CUB-Bird 2011: 84.5%, On Stanford Cars: 92.3%
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* Residual net is a STRONG baseline for fine-grained
— On CUB-Bird 2011: 84.5%, On Stanford Cars: 92.3%

e Attention model reaches new state-of-the-art
— Bird: 84.5% -> 86.0%
— Car:92.3% ->93.1%



Take Home Message -

* Residual net is a STRONG baseline for fine-grained
— On CUB-Bird 2011: 84.5%, On Stanford Cars: 92.3%

e Attention model reaches new state-of-the-art
— Bird: 84.5% -> 86.0%
— Car:92.3% ->93.1%

* Dynamic Time seems a worth idea:
— DT-RAM: 1.9 steps ~ RAM: 3 steps



Take Home Message -

e Carefully tuned Residual Net
— Scale augmentation (~1.2% improve in ImageNet)
— Where to put ReLU and BN (~0.6% improved in CIFAR)
— Strided convolution(~0.3% improved in ImageNet)
— smoothing factor in BN (~0.2% improved in ImageNet)
— Color augmentation(slightly improved)
— Weight decay
Note : all improved base in resnet-50



Thank youl! -

* Code Available:
— https://github.com/baidu-research/DT-RAM

— Written in Torch




